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   Outline 

• what we are doing 
 

• how, and what could be gained from common tools 
 

• path forward 



Pixel-level activity classification: basic idea 

• Identify low-level features, independent from long range / full event context 

• EM-like / track-like discrimination 

• Michel electron activity identification 

• Vertex identification & classification (interaction / decay ID, gamma conversion, …)  

 
• Support standard reconstruction or additional input to higher level ML 

• Several direct applications to physics & calibration 

• Use raw ADC: no hit-related inefficiencies 



Pixel-level activity classification: low level features 

• …independent from long range / full event context 

• limit the patch rage to the minimum: avoid effects of incorrect sim of inetactions 

• there is still ionization shape  (somewhat handled with drift downsampling) 

 accurate detector sim     (it was for LArIAT, may not be that easy for 3x1x1) 

 or explore more GAN, VAE, … 

• noise is also a factor, however easier to simulate or take from data 



EM/track in ProtoDUNE: CNN combined with reconstruction 

single hit predictions 

cluster predictions 

threshold applied, 
ready for 3D tracking 

3D tracks: P(track-like) 
- use all projections 

MC truth: 
• track-like 
• EM-like 



EM/track in ProtoDUNE: CNN combined with reconstruction 

EM component 

EM component Hadronic component 

Hadronic component 

pions, protons 
…. MC  
--- reco 

pions, reco  
--- with SCE 
--- no SCE 



EM/track in LArIAT: test on real data 



EM/track in neutrino events 

EM component Hadronic component 

EM component Hadronic component 
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dual-phase 3x1x1 prototype data is waiting 

• models were already prepared for dual-phase MC 
 

• need to do the work on data… this is the target, not MC 
 
 do MC-data overlay for most realism of noise  physics week now 
 investigate signal shape differences: back to GAN idea? 

 
As for all high and low level pattern recognition cases: 
 need to control nuisance parameters and feature differences in MC/data 



Michel electron selection: see more on DUNE physics week 

logP(decay vertex) 

EM/track 

Michel activity 



Vertex location / classification 

• decay / interation vertex ID used also for NDK work (Aaron) 

• more vertex ID:   EM shower vertex (Leigh) 

https://indico.fnal.gov/event/15601/contribution/0/material/slides/0.pdf
https://indico.fnal.gov/event/15601/contribution/0/material/slides/0.pdf
https://indico.fnal.gov/event/15601/contribution/0/material/slides/0.pdf
https://indico.fnal.gov/event/15601/contribution/0/material/slides/0.pdf
https://indico.fnal.gov/event/15601/contribution/0/material/slides/0.pdf
https://indico.fnal.gov/event/15601/contribution/0/material/slides/0.pdf


Moving to technical issues… 
 
• EM/track and Michel selection applied at all hit locations 

• single CNN model, improvments from architecture/trainning 
customization 

• production mode needs really fast calculation 

• few Michel examples, many EM/track per event 

• majority of „easy” cases, difficult are less frequent but most 
important to solve 

 
• Vertex ID applied to points/hits in selected regions 

• 1-to-few training examples per event 
 
 

 speed: training, production 
 

 training set optimization 
 

 architecture optimization 
 

data representation / generators 



Usual workflow for CNN preparation 

G4 sim, detsim, signal processing 

(and any required reco) 

LArSoft 

Model prototyping, training, tests 

Python, Keras API +Tensorflow backend 

Load the graph, apply CNN 

(model is fixed, „inference mode”) 

LArSoft 

save graph description, 
model coefficients 

does not need to be CNN/CVN 

• graph needs only a simple I/O interface, 

• straightforward to port to any framework 

• one can mix even different backends: Caffe / TF 
can read the sam format 

Theano used previously, quite faster, 
but no C++ API 



(Theano + our old, simple API could handle „sequential” graph, single output layer only) 

EM – track – none  layer, multi-class 
softmax / cross-entropy 

Michel-or-not  layer, binary 
sigmoid / MSE 

Fast learner! 
EM/track regularizes the 
Michel output  

Simple and work very well, 
but slower training 

Graphs 



Graphs 

 description of CNN ideally suited for parallelization: 

-- input / output data as a tensors 

-- batch of input tensors processed in parallel with a single graph 

 calculations decomposed into a basic building blocks to profit from parallelization & vectorization 

 TF and Keras toolkits provide API to handle complex graphs in a few lines, no need to see all details 

 not for „if-else” heavy solutions 

inputs 

outputs 

each input-output can be 
calculated in parallel to others 

operations inside graph 
can run in parallel 

single operation can be 
parallelized (e.g. kernel applied 

to every element in tensor) 

 

CPU/GPU can apply simple 
math instructions to multiple 

operands 

graph 

op 

op 

op 

op 

op 



import tensorflow as tf 

 

with tf.Session() as sess: 

    a = tf.Variable(5.0, name='a') 

    b = tf.Variable(6.0, name='b') 

    c = tf.multiply(a, b, name="c") 

 

    sess.run(tf.global_variables_initializer()) 

 

    print a.eval() # 5.0 

    print b.eval() # 6.0 

    print c.eval() # 30.0 

     

    tf.train.write_graph(sess.graph_def, 

            'models/', 'graph.pb', as_text=False) 

main_input = Input(shape=(img_rows, img_cols, 1), 

                   name='main_input') 

 

x = Conv2D(nb_filters1, (nb_conv1, nb_conv1), 

           padding='valid', data_format='channels_last', 

           activation=convactfn1)(main_input) 

 

x = Dropout(drop1)(x) 

x = Flatten()(x) 

 

x = Dense(densesize1, activation=actfn1)(x) 

x = Dropout(drop2)(x) 

 

x = Dense(densesize2, activation=actfn2)(x) 

x = Dropout(drop2)(x) 

 

em_trk_none = Dense(3, activation='softmax‚, 

                    name='em_trk_none_netout')(x) 

michel = Dense(1, activation='sigmoid', 

               name='michel_netout')(x) 

 

sgd = SGD(lr=0.01, decay=1e-4, momentum=0.9, nesterov=True) 

model = Model(inputs=[main_input], 

              outputs=[em_trk_none, michel]) 

model.compile(optimizer=sgd, 

     loss={'em_trk_none_netout': 'categorical_crossentropy', 

           'michel_netout': 'mean_squared_error'}, 

     loss_weights={'em_trk_none_netout': 0.1, 

                   'michel_netout': 1.}) 

Can describe every custom 
detail with TF: 

…but usually use Keras as a high 
level API for TF: 

C++ API for TF allows building graphs on the fly, but 
what we really need is loading graphs worked out in 
Python: this is available now in UPS. 

Graphs 



Only this part is saved for the inference mode, 
the grey rest is needed during the training.  

Can expand a blocks of nodes: 
CNN layers are easy to create with 
API, but you may want to see your 
own constructs details. 

Graphs 



EM-like selection ROC Michel-like selection ROC 

old model 
new, 1 x conv-2D 
2 x conv-2D 

old model 
new, 1 x conv-2D 
recent model from Aidan 

Performance with adjusted architecture 



Running on the grid 

• old code: almost no parallelization, little vectorization 

• Tensorflow – extremely flexible parallelization, code optimized, but: still cannot use full vectorization 
(no AVX on some grid CPUs) 

• need convenient mechanism to select code that fits hardware: old CPU / GPU / KNL / … 

• parallelization / vectorization may be very dependent on backend: target also Caffe / TF selection 

old model / code same size model / new code / two rounds of grid submissions 



Simple c++ implementation of CNN, 4 CPU 

========================================================= 

TimeTracker printout (sec)                       Avg 

========================================================= 

Full event                                     1029.31    

--------------------------------------------------------- 

source:RootInput(read)                       0.00172957 

reco:rns:RandomNumberSaver                   0.000820898 

reco:caldata:DataPrepModule                    7.14426 

reco:gaushit:GausHitFinder                     65.1564 

reco:hitfd:HitFinder35t                        107.047 

reco:linecluster:LineCluster                   1.5267 

reco:emtrkmichelid:EmTrackMichelId           606.107 

reco:pmtrack:PMAlgTrackMaker  (beam+cosmics)   152.281 

reco:pandora:StandardPandora  (only cosmics)   72.9939 

reco:TriggerResults:TriggerResultInserter    0.000111717 

end_path:out1:RootOutput                     2.9803e-05 

end_path:out1:RootOutput(write)                17.0451 

========================================================= 

MemoryTracker summary (base-10 MB units used) 

 

  Peak virtual memory usage (VmPeak)  : 3884.21 MB 

  Peak resident set size usage (VmHWM): 2863.01 MB 

========================================================= 

 

TimeReport ---------- Time  Summary ---[sec]---- 

TimeReport CPU = 1321.828051 Real = 1037.665077 

Tensorflow, using AVX, 4 CPU 

========================================================= 

TimeTracker printout (sec)                       Avg 

========================================================= 

Full event                                     486.511 

--------------------------------------------------------- 

source:RootInput(read)                       0.00148615 

reco:rns:RandomNumberSaver                   0.000784336 

reco:caldata:DataPrepModule                    7.04595 

reco:gaushit:GausHitFinder                     65.6555 

reco:hitfd:HitFinder35t                        115.82 

reco:linecluster:LineCluster                   1.75606 

reco:emtrkmichelid:EmTrackMichelId           50.716 

reco:pmtrack:PMAlgTrackMaker                   152.856 

reco:pandora:StandardPandora                   76.3032 

reco:TriggerResults:TriggerResultInserter    0.000106771 

end_path:out1:RootOutput                     4.4151e-05 

end_path:out1:RootOutput(write)                16.3541 

========================================================= 

MemoryTracker summary (base-10 MB units used) 

 

  Peak virtual memory usage (VmPeak)  : 4463.87 MB 

  Peak resident set size usage (VmHWM): 3052.71 MB 

========================================================= 

 

TimeReport ---------- Time  Summary ---[sec]---- 

TimeReport CPU = 620.489671 Real = 494.307292 

On a ProtoDUNE full event:   6 APA’s,   beam event  +  ~60-70 cosmic tracks 

 CNN runs 10x faster, no longer bottleneck, but it is not the only thing in the reco chain 

 parallelization has an overhead, likely allocating 2 or 4 CPU on the fermigrid should be optimal 

 the larger batch of inputs, the faster processing, …and more memory needed 

 optimally, feature maps should be done once / event, not redone for each patch… 



Upcoming work: more brain power on training data handling 

1. EM / track / Michel: simple workflow enough 

 ADC / PDG maps in ROOT histograms, then „patch” preparation for the training 

 training set composition „optimized” manually  (otherwise heavy weapon for a simple task) 

 straigt-forward data augmentation (flips only) 

2. More towards CNN/reco combined: disambiguation and segmentation, work waiting for the 
Ph.D. student 

 ADC / TrackID maps in ROOT histograms, will need multiple resolution „glimps” 

 training batches should be generated o the fly 

 likely will go for automated opimization of training set 

3. primary vertex location: main focus now due to the DUNE TDR 

 ADC maps in ROOT histograms, 1 byte / pixel, ~150-180 kB / DUNE LBL n event – ready 

 multiple resolution „glimps”, recurrent CNN: batches MUST be generated o the fly – ready 

 automated opimization of training batches – ongoing 

 NOTE non-trivial issues with the wire wrapping and „global image” – done in a hacky way 



Wrapped wires can be very annoying… 





Training data representation 

For practical work: 

 need >1M events in memory, can swap from disk occasionally 

 need fast unpacking for the batch generation purposes 

 no strong downsampling (not below the detector effective resolution) 



Items to try today? 

 load Caffe model with TF/Keras,  …or vice versa and include Caffe backend in 
EM/track inference 

 

 modify CVN for 2-view dual-phase neutrinos 

 

 look what event formats others are using 


